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   Outline 

• what we are doing 
 

• how, and what could be gained from common tools 
 

• path forward 



Pixel-level activity classification: basic idea 

• Identify low-level features, independent from long range / full event context 

• EM-like / track-like discrimination 

• Michel electron activity identification 

• Vertex identification & classification (interaction / decay ID, gamma conversion, …)  

 
• Support standard reconstruction or additional input to higher level ML 

• Several direct applications to physics & calibration 

• Use raw ADC: no hit-related inefficiencies 



Pixel-level activity classification: low level features 

• …independent from long range / full event context 

• limit the patch rage to the minimum: avoid effects of incorrect sim of inetactions 

• there is still ionization shape  (somewhat handled with drift downsampling) 

 accurate detector sim     (it was for LArIAT, may not be that easy for 3x1x1) 

 or explore more GAN, VAE, … 

• noise is also a factor, however easier to simulate or take from data 



EM/track in ProtoDUNE: CNN combined with reconstruction 

single hit predictions 

cluster predictions 

threshold applied, 
ready for 3D tracking 

3D tracks: P(track-like) 
- use all projections 

MC truth: 
• track-like 
• EM-like 



EM/track in ProtoDUNE: CNN combined with reconstruction 

EM component 

EM component Hadronic component 

Hadronic component 

pions, protons 
…. MC  
--- reco 

pions, reco  
--- with SCE 
--- no SCE 



EM/track in LArIAT: test on real data 



EM/track in neutrino events 

EM component Hadronic component 

EM component Hadronic component 
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dual-phase 3x1x1 prototype data is waiting 

• models were already prepared for dual-phase MC 
 

• need to do the work on data… this is the target, not MC 
 
 do MC-data overlay for most realism of noise  physics week now 
 investigate signal shape differences: back to GAN idea? 

 
As for all high and low level pattern recognition cases: 
 need to control nuisance parameters and feature differences in MC/data 



Michel electron selection: see more on DUNE physics week 

logP(decay vertex) 

EM/track 

Michel activity 



Vertex location / classification 

• decay / interation vertex ID used also for NDK work (Aaron) 

• more vertex ID:   EM shower vertex (Leigh) 

https://indico.fnal.gov/event/15601/contribution/0/material/slides/0.pdf
https://indico.fnal.gov/event/15601/contribution/0/material/slides/0.pdf
https://indico.fnal.gov/event/15601/contribution/0/material/slides/0.pdf
https://indico.fnal.gov/event/15601/contribution/0/material/slides/0.pdf
https://indico.fnal.gov/event/15601/contribution/0/material/slides/0.pdf
https://indico.fnal.gov/event/15601/contribution/0/material/slides/0.pdf


Moving to technical issues… 
 
• EM/track and Michel selection applied at all hit locations 

• single CNN model, improvments from architecture/trainning 
customization 

• production mode needs really fast calculation 

• few Michel examples, many EM/track per event 

• majority of „easy” cases, difficult are less frequent but most 
important to solve 

 
• Vertex ID applied to points/hits in selected regions 

• 1-to-few training examples per event 
 
 

 speed: training, production 
 

 training set optimization 
 

 architecture optimization 
 

data representation / generators 



Usual workflow for CNN preparation 

G4 sim, detsim, signal processing 

(and any required reco) 

LArSoft 

Model prototyping, training, tests 

Python, Keras API +Tensorflow backend 

Load the graph, apply CNN 

(model is fixed, „inference mode”) 

LArSoft 

save graph description, 
model coefficients 

does not need to be CNN/CVN 

• graph needs only a simple I/O interface, 

• straightforward to port to any framework 

• one can mix even different backends: Caffe / TF 
can read the sam format 

Theano used previously, quite faster, 
but no C++ API 



(Theano + our old, simple API could handle „sequential” graph, single output layer only) 

EM – track – none  layer, multi-class 
softmax / cross-entropy 

Michel-or-not  layer, binary 
sigmoid / MSE 

Fast learner! 
EM/track regularizes the 
Michel output  

Simple and work very well, 
but slower training 

Graphs 



Graphs 

 description of CNN ideally suited for parallelization: 

-- input / output data as a tensors 

-- batch of input tensors processed in parallel with a single graph 

 calculations decomposed into a basic building blocks to profit from parallelization & vectorization 

 TF and Keras toolkits provide API to handle complex graphs in a few lines, no need to see all details 

 not for „if-else” heavy solutions 

inputs 

outputs 

each input-output can be 
calculated in parallel to others 

operations inside graph 
can run in parallel 

single operation can be 
parallelized (e.g. kernel applied 

to every element in tensor) 

 

CPU/GPU can apply simple 
math instructions to multiple 

operands 

graph 

op 

op 

op 

op 

op 



import tensorflow as tf 

 

with tf.Session() as sess: 

    a = tf.Variable(5.0, name='a') 

    b = tf.Variable(6.0, name='b') 

    c = tf.multiply(a, b, name="c") 

 

    sess.run(tf.global_variables_initializer()) 

 

    print a.eval() # 5.0 

    print b.eval() # 6.0 

    print c.eval() # 30.0 

     

    tf.train.write_graph(sess.graph_def, 

            'models/', 'graph.pb', as_text=False) 

main_input = Input(shape=(img_rows, img_cols, 1), 

                   name='main_input') 

 

x = Conv2D(nb_filters1, (nb_conv1, nb_conv1), 

           padding='valid', data_format='channels_last', 

           activation=convactfn1)(main_input) 

 

x = Dropout(drop1)(x) 

x = Flatten()(x) 

 

x = Dense(densesize1, activation=actfn1)(x) 

x = Dropout(drop2)(x) 

 

x = Dense(densesize2, activation=actfn2)(x) 

x = Dropout(drop2)(x) 

 

em_trk_none = Dense(3, activation='softmax‚, 

                    name='em_trk_none_netout')(x) 

michel = Dense(1, activation='sigmoid', 

               name='michel_netout')(x) 

 

sgd = SGD(lr=0.01, decay=1e-4, momentum=0.9, nesterov=True) 

model = Model(inputs=[main_input], 

              outputs=[em_trk_none, michel]) 

model.compile(optimizer=sgd, 

     loss={'em_trk_none_netout': 'categorical_crossentropy', 

           'michel_netout': 'mean_squared_error'}, 

     loss_weights={'em_trk_none_netout': 0.1, 

                   'michel_netout': 1.}) 

Can describe every custom 
detail with TF: 

…but usually use Keras as a high 
level API for TF: 

C++ API for TF allows building graphs on the fly, but 
what we really need is loading graphs worked out in 
Python: this is available now in UPS. 

Graphs 



Only this part is saved for the inference mode, 
the grey rest is needed during the training.  

Can expand a blocks of nodes: 
CNN layers are easy to create with 
API, but you may want to see your 
own constructs details. 

Graphs 



EM-like selection ROC Michel-like selection ROC 

old model 
new, 1 x conv-2D 
2 x conv-2D 

old model 
new, 1 x conv-2D 
recent model from Aidan 

Performance with adjusted architecture 



Running on the grid 

• old code: almost no parallelization, little vectorization 

• Tensorflow – extremely flexible parallelization, code optimized, but: still cannot use full vectorization 
(no AVX on some grid CPUs) 

• need convenient mechanism to select code that fits hardware: old CPU / GPU / KNL / … 

• parallelization / vectorization may be very dependent on backend: target also Caffe / TF selection 

old model / code same size model / new code / two rounds of grid submissions 



Simple c++ implementation of CNN, 4 CPU 

========================================================= 

TimeTracker printout (sec)                       Avg 

========================================================= 

Full event                                     1029.31    

--------------------------------------------------------- 

source:RootInput(read)                       0.00172957 

reco:rns:RandomNumberSaver                   0.000820898 

reco:caldata:DataPrepModule                    7.14426 

reco:gaushit:GausHitFinder                     65.1564 

reco:hitfd:HitFinder35t                        107.047 

reco:linecluster:LineCluster                   1.5267 

reco:emtrkmichelid:EmTrackMichelId           606.107 

reco:pmtrack:PMAlgTrackMaker  (beam+cosmics)   152.281 

reco:pandora:StandardPandora  (only cosmics)   72.9939 

reco:TriggerResults:TriggerResultInserter    0.000111717 

end_path:out1:RootOutput                     2.9803e-05 

end_path:out1:RootOutput(write)                17.0451 

========================================================= 

MemoryTracker summary (base-10 MB units used) 

 

  Peak virtual memory usage (VmPeak)  : 3884.21 MB 

  Peak resident set size usage (VmHWM): 2863.01 MB 

========================================================= 

 

TimeReport ---------- Time  Summary ---[sec]---- 

TimeReport CPU = 1321.828051 Real = 1037.665077 

Tensorflow, using AVX, 4 CPU 

========================================================= 

TimeTracker printout (sec)                       Avg 

========================================================= 

Full event                                     486.511 

--------------------------------------------------------- 

source:RootInput(read)                       0.00148615 

reco:rns:RandomNumberSaver                   0.000784336 

reco:caldata:DataPrepModule                    7.04595 

reco:gaushit:GausHitFinder                     65.6555 

reco:hitfd:HitFinder35t                        115.82 

reco:linecluster:LineCluster                   1.75606 

reco:emtrkmichelid:EmTrackMichelId           50.716 

reco:pmtrack:PMAlgTrackMaker                   152.856 

reco:pandora:StandardPandora                   76.3032 

reco:TriggerResults:TriggerResultInserter    0.000106771 

end_path:out1:RootOutput                     4.4151e-05 

end_path:out1:RootOutput(write)                16.3541 

========================================================= 

MemoryTracker summary (base-10 MB units used) 

 

  Peak virtual memory usage (VmPeak)  : 4463.87 MB 

  Peak resident set size usage (VmHWM): 3052.71 MB 

========================================================= 

 

TimeReport ---------- Time  Summary ---[sec]---- 

TimeReport CPU = 620.489671 Real = 494.307292 

On a ProtoDUNE full event:   6 APA’s,   beam event  +  ~60-70 cosmic tracks 

 CNN runs 10x faster, no longer bottleneck, but it is not the only thing in the reco chain 

 parallelization has an overhead, likely allocating 2 or 4 CPU on the fermigrid should be optimal 

 the larger batch of inputs, the faster processing, …and more memory needed 

 optimally, feature maps should be done once / event, not redone for each patch… 



Upcoming work: more brain power on training data handling 

1. EM / track / Michel: simple workflow enough 

 ADC / PDG maps in ROOT histograms, then „patch” preparation for the training 

 training set composition „optimized” manually  (otherwise heavy weapon for a simple task) 

 straigt-forward data augmentation (flips only) 

2. More towards CNN/reco combined: disambiguation and segmentation, work waiting for the 
Ph.D. student 

 ADC / TrackID maps in ROOT histograms, will need multiple resolution „glimps” 

 training batches should be generated o the fly 

 likely will go for automated opimization of training set 

3. primary vertex location: main focus now due to the DUNE TDR 

 ADC maps in ROOT histograms, 1 byte / pixel, ~150-180 kB / DUNE LBL n event – ready 

 multiple resolution „glimps”, recurrent CNN: batches MUST be generated o the fly – ready 

 automated opimization of training batches – ongoing 

 NOTE non-trivial issues with the wire wrapping and „global image” – done in a hacky way 



Wrapped wires can be very annoying… 





Training data representation 

For practical work: 

 need >1M events in memory, can swap from disk occasionally 

 need fast unpacking for the batch generation purposes 

 no strong downsampling (not below the detector effective resolution) 



Items to try today? 

 load Caffe model with TF/Keras,  …or vice versa and include Caffe backend in 
EM/track inference 

 

 modify CVN for 2-view dual-phase neutrinos 

 

 look what event formats others are using 


